حل عددی معادلات دیفرانسیل تابعی وابسته به زمان به وسیله موجک هار

thesis
abstract

در این پایان نامه، ابتدامفهوم آنالیز چند ریزه سازی ارائه می شود. همچنین قضایای مربوط به آنالیز چند ریزه سازی به همراه اثبات آن ها آورده می شود، سپس با استفاده از آنالیز چند ریزه سازی موجک متعامد هار ساخته می شود، در ادامه ویژگی های موجک هار و قضایای مربوطه آورده شده است. ماتریس های عملیاتی انتگرال و ضرایب پایه های هار ساخته می شود. و با استفاده از این ماتریس ها به تقریب معادله دیفرانسیل تابعی وابسته به زمان می پردازیم. نتایج حاصل این روش بر روی دو مثال آورده شده است.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

حل معادلات دیفرانسیل معمولی-جزئی مرتبه کسری با موجک هار

هدف از این پایان نامه معرفی موجک هار و بیان کاربردهای آن است که در پنج فصل گنجانده شده است. ابتدابه بیان تعاریف اولیه و روابط معادلات دیفرانسیل کسری می پردازیم. سپس توابع موجک هار و لژاندر را مطالعه می کنیم. در ادامه معادلات کلاین گوردن و سینوی-گوردن و نقطه جنبشی نوترون را معرفی می کنیم.

پیاده‌سازی سخت‌افزاری حل عددی معادلات دیفرانسیل روی F‌P‌G‌A

حل عددی معادلات دیفرانسیل با استفاده از بسترهای C‌P‌U و G‌P‌U مبتنی بر پیاده‌سازی نرم‌افزاری است. در سال‌های اخیر، راهکار جدیدی مبتنی بر پیاده‌سازی سخت‌افزاری معادلات با استفاده از بستر F‌P‌G‌A، به‌دلیل افزایش سرعت حل و کاهش توان مصرفی، مورد توجه جدی قرار گرفته است. در این پژوهش با حل چند مسئله‌ی نوعی، شامل سیستم جرم و فنر و معادله‌ی موج، روش پیاده‌سازی سخت‌افزاری برای حل معادلات دیفرانسیل بر ر...

full text

حل عددی معادلات تابعی به وسیله روش های کنترل بهینه

در این رساله روش های محاسباتی جدیدی برای حل دسته های مختلفی از معادلات تابعی بر اساس مسائل کنترل بهینه ارائه شده است. در واقع نشان می دهیم که بوسیله ی این روش ها می توان یک معادله تابعی را به یک مسئله کنترل بهینه ی متناظر با قیود تساوی که آن را مسئله مزدوج می نامیم، تبدیل نمود. در مسئله مزدوج بدست آمده متغیر حالت نقش جواب تقریبی مسئله ی اولیه را بازی می کند. پس از آن می توان با تقریب متغیرهای ک...

15 صفحه اول

یک روش جدید برای حل عددی معادلات انتگرال-دیفرانسیل با موجک هار

در این پایان نامه ابتدا مفاهیم مقدماتی پیش نیاز برای موضوع مورد بحث ارائه می شود که عبارتند از معادلات انتگرال خطی فردهلم، معادلات انتگرال خطی ولترا، معادلات انتگرال-دیفرانسیل، موجک هار و روش برویدن. در فصل دوم به حل عددی معادلات انتگرال فردهلم غیر خطی نوع دوم با استفاده از موجک هار می پردازیم.به این صورت که ابتدا تقریب توابع ‎$ f(x) $‎, ‎$ k(x,t) $‎ و ‎$ u(x) $‎ با استفاده از موجک هار محا...

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه کردستان - دانشکده علوم پایه

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023